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Abstract 

The ideal observer for the task of object localization in the presence of correlated 
noise is implemented by means of the minimum chi-squared method, which is equivalent to the 
maximum likelihood method when the noise is additive and normally distributed. The 
prewhitening approach is hich explored izlr2 the noise in the data is made uncorrelated by 
filtering the data with the filter S where S is the noise power spectrum. The location 
of the object is then found by fitting's model of the object to the prewhitened data. A 
measure of the goodness of fit is proposed that is based upon the serial correlation in the 
prewhitened residuals, the difference between the data and the fit. These concepts are 
demonstrated by applying them to simulated data that possess known noise characteristics. 
It is shown that the accuracies predicted for the ideal observer can be achieved by the 
prewhitening technique. 

Introduction 

It was shown in earlier work' that the ideal observer places increased emphasis on the 
high-frequency components of an image when asked to perform high-order tasks such as object 
localization, width determination and measurement of the separation between objects. For 
example, in typical medical film/screen systems the ideal observer may derive significant 
information from the high-frequency regions where the modulation transfer function (MTF) and 
the noise power spectrum have dropped by more than an order of magnitude. In this paper we 
consider the implementation of the ideal observer for the task of localization of a known 
object from noisy data in which the noise correlations are known. While the specific task 
of localization of objects or edges given one-dimensional data is addressed, the approach 
taken has general application to essentially all parameter estimation tasks. The 
often-mentioned trick of prewhitening the noise in the data is employed to convert it to 
white, or uncorrelated noise. Then a standard parameter estimation procedure that assumes 
the noise is uncorrelated, such as minimum chi-squared or least squares, may be used. We 
discuss the problems associated with the prewhitening procedure and the robustness of the 
technique. It is demonstrated through simulation that this method achieves an accuracy in 
object localization that essentially matches that predicted by the formulae given in Ref. 1. 
It is shown that the minimum chi-squared procedure also provides a reliable estimate of the 
accuracy of the estimated parameters when the data have been prewhitened. Of further 
interest is the penalty in accuracy incurred when noise correlations are not taken into 
account. 

Whenever a parametric model is fit to a set of data, it is important to determine whether 
the data are matched to within their statistical accuracy. The goodness of fit is 
traditionally obtained by comparison of the chi-squared value with the number of degrees of 
freedom, that is, the number of (independent) data points minus the number of fit-ted 
parameters. This method suffers from its reliance on accurate knowledge of the rms 
deviation of the noise. We discuss an improved method for determining the goodness of fit 
that is based upon the observed serial correlation between the residuals (deviations between 
the fit and the data) and the application of this method to situations in which correlations 
in the noise are known to exist. 

Optimum estimators 

It will be assumed that aside from stochastic noise an observed set of data can be 
adequately predicted by a known model of reality. Typically there are one or more 
parameters in the model that are unknown. It is the task of an estimation procedure or 
estimator to determine the unknown parameters. If the available data are not degraded by 
noise and the model is correct, it is normally possible to determine one set of the unknown 
parameters exactly. If the data are subjected to noise, however, the estimated values of 
the parameters will be uncertain to some extent. An optimum estimator is one that minimizes 
the error in the estimated parameters with respect to some weighting function, called a cost 
function, averaged over the ensemble of possible noise samples. It is desirable that the 
averages of the estimated parameters be their actual values, that is, that the estimator be 
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unbiased. It is well known that the maximum likelihood estimator yields optimum results in 
a wide variety of circumstances.2 Suppose a set of measurements yi are subject to additive 
and normally distributed noise. The likelihood or probability density function for a 
particular set Of yi is3 

Lz- exp[ - i 1 (yi - Yi) wij (Yj - S;j)l 
ij 

where the matrix W, which weights the importance of correlated noise fluctuations in two 
different measurements, is the inverse of the noise covariance matrix 

[W-'lij = Cij = '(Yi - i;i)(Yj - Yj)' 

Here the angular parentheses indicate an average over the ensemble Of all noise 
fluctuations. By the definition both C and W are symmetric. The noise covariance matrix is 
the Fourier transform of the noise power or Wiener spectrum. In the above two expressions, 
Yi is the mean value of ye, 

z.? 
which is also the value of yi that would be obtained in the 

absence of noise. We see rom Eq. (1) that the likelihood function is simply a product of 
Gaussians centered on the mean values Bi. If the noise is uncorrelated, C is diagonal and 
hence so is W. Then the likelihood function would include only one Gaussian for each yi. 
It is the off-diagonal elements in C arising from correlations in the noise that lead to 
additional Gaussian factors involving cross-products between different measurements. 

Suppose that the measurements yi are to be modelled by a function f that is dependent 
upon some number of parameters whose values are to be estimated from the measurements. 
Replacement of the Bi in Eq. (1) by values fi predicted by the model for a particular set of 
parameters yields the likelihood of obtaining a particular set of under those 
circumstances. The principle of maximum likelihood indicates yi that the optimum way to 
determine the unknown parameters is to find that set of parameters that maximizes this 
likelihood function. Instead of maximizing the likelihood function itself, it is convenient 
to minimize the negative of the logarithm of the likelihood function. Half of this is 
chi-squared 

x2 = 1 (Yi - fi) wij (Yj - fj) 
ij 

(3) 

By taking the logarithm of the likelihood function, the problem has been reduced to one of 
finding a minimum in a quadratic function of the residuals yi - fi. It should be emphasized 
that the minimum x2 solution for the unknown parameters is optimum for Gaussian distributed, 
additive noise as it is identical to the maximum likelihood estimate in that situation. 

When the noise is uncorrelated, W is diagonal and Eq. (3) reduces to the familiar 
expression 

(Yi 
2 

x2 = I: 
- fi) 

i 'i 
2 

(4) 

where oi2 is the noise variance for the ith measurement. Since the simplifying assumption 
that noise is uncorrelated is often made, this equation abounds in textbooks on data 
analysis and the methods for finding the values of the unknown paratneters that minimize x2 
are well documented. When f is linearly related to the parameters, the solution to the 
resulting linear matrix equation is easily found by the Newton-Raphson techni.que.4'5 When 
the parametric dependence is nonlinear, the minimum chi-squared solution usually may be 
found by iteration, making the assumption that f is approximately linearly related to the 
parameters in local regions. 

If the noise is stationary (has the same variance everywhere) as well as uncorrelated, x2 
simplifies to 

x2 = (J-2 F (Yi - fi)2 (5) 

In this case the condition of minimum x2 becomes equivalent to the minimization of the sum 
of the squared residuals usually referred to as least squares. We see that the least 
squares solution to parameter estimation will yield optimum results when the noise is 
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distributed, uncorrelated, and stationary. Expanding Eq. (5), we find additive, normally 
that 

x2 = o-2 (6) 

If the index i refers to samples at an ordered sequence of evenly spaced positions, the last 
term of this expression is recognized as being proportional to the cross correlation between 
the data yi and the predicted function fi 

“j = C Yifi+j 
i 

(7) 

Provided that the sum over Ei2 is unchanged as the position of the samples is shifted, which 
occurs when f is constant outside the observation interval, then the condition of maximum 
cross correlation is identical to that of minimum x2. Thus the cross correlator is optimal 
only for uncorrelated noise. It is suited to the two tasks of amplitude estimation and 
object localization. In the former case, j is fixed to correspond to the known location of 
the object. In the latter, j is varied to find the maximum value of the cross correlation. 
The maximum in @. can be 
sample-spacing accu'racy. 

interpolated between the discrete samples to achieve sub 
Cross correlation is not as useful for other tasks in which the 

parametrization is not simply related to the positional index j. It is also not optimal for 
correlated noise unless the noise in the data has been prewhitened, as described below. 

It is worthwhile to mention the relationship between parameter estimation and the binary 
decision problem. Wagner6 discussed the latter and derived the SNR for detection for 
arbitrary noise correlation but under the assumption that the observer treats the noise as 
white. Hanson? extended this using the prewhitening concept to obtain the SNR for the ideal 
observer, which properly takes into account the known noise correlation, and obtains the 
familiar expression for the matched filter. In the binary decision problem it is necessary 
to choose between two alternative functions on the basis of a set of data. The strategy is 
to construct a decision variable ($ in Wagner's notation) that is the logarithm of the 
ratio of the likelihood functions '$or the two alternatives. Under the assumption of 
additive, normally distributed noise, this is similar in construction to that of x2. 
Expansion of $12 leads to Wagner's Eq. (6), which is closely related to our Eq. (6) in that 
a cross co relation term describes the dependence upon 
function N(r2) 

t e 
B I) 

data. If Wagner's alternative 
is written as a Taylor series expansion of N with respect to a parameter a, 

it fs easily shown that $12 is proportional to ACY in the limit as Aa + 0. This allows one 
;zf yterpret , lllj! as the signal in the SNR in that limit. This correspondence was used in 

1 and semi arly in Ref. 8 to determine the uncertainties in the estimation of various 
parameters for the ideal observer through the expedient of the expression of the SNR' for 
binary decision. Since the latter as well as the minimum x 2 formalism are based on the same 
underlying theory and assumptions, it is expected that both should yield identical results. 
However, the generality of the minimum x2 approach allows one to address more complicated 
problems, such as the estimation of multiple parameters, than does the simple binary 
decision theory. 

One approach to the incorporation of noise correlation in parameter estimation would be 
to minimize the complete x2 expression given in Eq. (3). Setting the derivative of Eq. (3) 
with respect to the positional parameter A to zero, identifying this derivative as that with 
respect to x, and using the symmetry of W, we find that 

C [Eli wij (Yj - fj) = O  

ij 
(8) 

This nonlinear equation may be solved using the standard method for solving Eq. (4). 
However, the nondiagonal nature of W for correlated noise complicates the solution of this 
problem. When the noise is white, W is diagonal and Eq. (8) amounts to an inner product 
over the data index of the derivative of f with the residuals. When W is not diagonal, a 
convolution between these two is required, lengthening the computation time. 

Prewhitening approach ____~-___- 

As an alternative approach to optimal estimation in the presence of correlated noise, we 
will explore the technique of prewhitening the noise9 so that the more standard methods for 
minimizing Eq. (4), applicable to white noise, may be employed. The prewhitenin 

9 
approach 

may be made rigorous by invoking the singular value decomposition theorem1 for the 
correlation matrix C, which is square and symmetric and given by 
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c = UTSU (9) 

where U is an orthogonal matrix (U-l = UT) and S is a diagonal matrix whose elements are the 
singular values of C. The weight matrix W may be written as 

w = c-1 = UTRU (10) 

where A is also diagonal and Xk = sil. Then in matrix notation x2 from Eq. (3) becomes 

x2 = (YT - FT)UTAU(Y - F) = (YT - FT)UTA1/2UUThl/2U(Y - F) (11) 

where A1j2 is a diagonal matrix with entries xp . It is observed that this is an inner 
product 

x2 = (FT - F”T,(; - ;) = 1 (yk - ik) 2 
k 

where the N indicates the transformation, 

yk = [v~A"~UY]~ = 1 i x1/2 Uik 
ij 

uij Yj 

(12) 

(13) 

and the same for yk. Through this transformation it is possible to reduce the more 
complicated expression for x2 appropriate to correlated noise, Eq. (3), to the form of. the 
simpler one for uncorrelated noise, Eq. (4), with Ui = 1. Thus, the transformed residuals 
clearly are uncorrelated, that is they have been prewhitened. Given a specific matrix C, 
the matrices U and S may be found using standard computer algorithms. By transforming the 
data y. it is possible to simplify the 
form 0 'f 

an2d the predicted function values fi using Eq. (13), 
x t W. (121, and make use of the standard minimum x2 algorithms based on this 

simpler form. 

If the noise is stationary, it is possible to simplfy the prewhitening procedure. In 
this case the matrix C is Toeplitz, that is, each row of C has the same entries as the one 
above it but shifted one element to the right. Thus the entries along diagonal lines are 
identical. Often it is reasonable to approximate Toeplitz matrices by circulant matrices in 
which each row is a right cyclic shift of the row preceding it. 
U may be identified as the discrete Fourier transforml' 

Then the orthogonal matrix 
and the diagonal elements of S are 

the (real) Fourier amplitudes of the transformation of the first row of C or the noise power 
spectrum. The transformation given in Eq. (13) is identified as a filtering operation since 

;rt2 = .T1/2 
's Fourier transformed, multiplied by Xi and inverse transformed, where the filter is 

or the reciprocal of the square root of the noise power spectrum. 
b6 anti&pated because 

This was to 
it was desired to change the original noise power spectrum S to a 

constant, and a filtering procedure alters all spectra by the square of the filter. Note 
that the variance in the noise is unity after prewhitening if the above prescription is 
strictly followed. The prewhitening filter may be multiplied by an arbitrary factor to 
arrange any desired normalization. A particu arly 

7 
appealing choice is to maintain the 

low-frequency normalization by using LS(f=O)/Sll 2. 

The possibility that the noise power spectrum goes to zero over some frequency interval 
must be contended with. The prewhitening filter may be regularized through the choice 

S-i-E 
s* + E2 

(14) 

where E is a small positive number. The E in the numerator is needed to prevent the filter 
from going to zero as S goes to zero, which would preclude the extraction of possibly useful 
signal information. The maximum value this filter can attain is e-1. If S becomes smaller 
than E, the spectrum of the prewhitened noise will not be flat, contrary to the assumption 
of the subsequent estimator. This is where the optimality of the prewhitening approach can 
break down. 

A few precautions must be taken in applying the prewhitening filter. It is known that 
when the filtering operation is carried out by means of the discrete Fourier transform, the 
result is identical to a cyclic convolution. Thus, wraparound occurs in which the data at 
one end of the interval are strongly affected by those from the other end. This effect 
arises from the circulant approximation of the Toeplitz matrices and should be avoided by 
extending the interval of the data sufficiently. Extension of the interval also allows the 
use of fast Fourier transforms, whose speed is optimimum for interval lengths of powers of 
two. In the present work t'ne interval length is chosen to be twice the next power of two 

12 / SPIE Vol. 454 Application of Optical instrumentation in Medicine XII (1984) 



greater than or equal to the length of the data segment. In extending the data interval it 
is necessary to fill in the mock data points with some specific values. If the mock data 
points are set to zero and the actual data at the ends of the valid interval are far from 
zero, severe edge effects may result. To ameliorate this unwanted behavior, in the present 
work the mock data points are set equal to a linear function that connects the first and 
last data points over the region of extension. Even with this precaution the discontinuity 
in slope that can occur at the ends of the data interval can produce undesirable effects 
when filtered. Therefore it is desirable to use a longer interval for the prewhitening 
filtering than is used for the fitting of the actual data. It is imperative that whatever 
procedure is followed in prewhitening the data, the same procedure be applied to the fitting 
function f in the minimum x2 calculation. 

Goodness of fit 

After a parametric model has been fit to a set of data, it is very desirable to know how 
closely the fitted function matches the data. An important reason for determining the 
goodness of fit is to judge the adequacy of the model. If it is determined that the 
observed residuals, the deviations between the fit and the data, are improbable, given the 
known statistical characteristics of the noise, then the model used to fit. the data is 
suspect and the derived parameters may be meaningless. A commonly used test for the 
goodness of fit is to compare the x2 value to a table of the integrated x2 probability 
distribution for the number of degrees of freedom,12 that is, the number of data points 
minus the number of parameters being estimated. If the indicated percentile value is 
improbable, for example if it is less than 5% or greater than 95%, then the fit is suspect. 
Of course, this test relies on the noise being uncorrelated and so can only be used for 
correlated noise after the prewhitening procedure described above. However, the x2 test is 
not very useful as it relies on accurate knowledge of the noise variance. For 100 degrees 
of freedom the rms value of the noise must be known to better than 10% for the test to be 
meaningful. 

We propose to use an alternate measure for the goodness of fit that is based upon the 
observed serial correlation of the residuals. This approach has merit because it resembles 
the method emplo ed by trained human observers 
Durbin and WatsonY3f14115 define the statistic 

to distinguish bad fits from good ones. 

n-l 
1 (r. 1+1 - ri12 

d = i=l--- 

'f * 'i 
i=l 

(15) 

where the ri are the sequence of residuals yi - fi. Note that the denominator is an 
estimate of the variance in the residuals and that no estimate or tne noise variance is 
required. Durbin and Watson have computed the cumulative probability distribution of d 
assuming that the residuals are those of linear regression fits to data that have 
uncorrelated, normally distributed noise. The specific value of d obtained for a given fit 
may be compared with their tables to obtain a percentile value as in the x2 tsst described 
above. If the percentile value is very low or very high, one may conclude that the 
residuals probably do not conform to the assumption of normally distributed, uncorrelated 
noise. As with the x2 test, the Durbin-Watson test is only useful when applied to fits of 
uncorrelated noise or correlated noise that has been prewhitened. For large numbers of 
degrees of freedom, the probability distribution for d is roughly Gaussian with a mean of 
about 2 and a variance of 4/(degrees of freedom). Thus,. values of d < 1.0 are fairly 
improbable if the residuals conform to the assumptions. It is easy to show that the mean of 
d is closely related to the first moment of the power spectral density of the residuals. 
For noise that possesses short range, positive correlation, the mean of d will. be less than 
2. 

Estimation of parameter uncertainties 

It is usually desirable to know how accurately the parameters have been estimated. The 
statistical accuracy with which a parameter can be estimated clearly depends upon the rate 
of dependence of the likelihood function upon that parameter. In the vicinity of maximum 
likelihood. this is related to the curvature of the likelihood function, the loqarithm of 
which is linearly related to x2. Thus, the accuracy in the estimation of a parameter is 
simply related to the second derivative of x2 with respect to that parameter.16 Using 
Eq. (4) for uncorrelated noise, we find the standard deviation in position oL is given by 

-2 _ i a2x2 u* ---= 2 aA 
(16) 
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The counterpart of this for uncorrelated Poisson noise was given in Ref. 17. 4 variation of 
the matched filter for this situation was also derived there. Equation (16) states that it 
is the derivative of a function that carries information about its position, which is 
eminently reasonable. 

The optimal positional accuracy derived in Ref. 1 using the binary decision approach 
mentioned above, appropriate to 1-D signals, is given by 

OA -2 = 2r !? F2 u2 du 
s 

(17) 

where H is the contrast transfer function, F is the Fourier transform of the original 
unblurred function, S is the noise power spectrum, and u is the spatial frequency variable. 
Comparison of Eqs. 16 and 17 reveals that they are identical in the limit that the summation 
in the former becomes an integration. Then the two expressions are related by Parseval's 
theorem, Eq. (16) referring to the power in the spatial domain and Eq. (17) referring to the 
power of the identical quantity represented in the frequency domain. Accounting for the 
factors in Eq. (17) in 

f 
erms of their inverse transforms, we see HF corresoonds to the 

measured function f, S-l 2 arises from the prewhitening filter that is necessary to derive 
Eq. (16) and is related to Ui and u corresponds to the derivative with respect to x. In 
practice the evaluation of these two expressions may yield different results, because the 
discrete samples of fi may be unequally spaced or not close enough or may not span the 
complete function f. 

If an estimation procedure that is optimum for white noise is used to analyze data 
possessing correlated noise (without prewhitening), the resulting uncertainty in position is 
given by 

eA -2 = 2n 
[ JH2 F 2 u2 du12 

(18) s SH2 F 2 u2 du 

This result is obtained by applying the same approach in Ref. 1 to the formula derived by 
Wagner6 for this non-optimum observer. It can be shown that the uncertainty dr,rived from 
Eq. (18) is greater than or equal to that derived from Eq. (17). 

Examples 

It is possible to test the prewhitening and fitting procedures described above by 
generating numerous data sets with known noise characteristics and comparing the response of 
the algorithms against that predicted. To that end these procedures were implemented on a 
CDC7600 computer. Data were generated by adding Gaussian-distributed, random noise that had 
been filtered by the square root of a known noise power spectrum S to object functions 
filtered by a known contrast transfer function H. The two sets of spectra used in these 
studies are shown in Fig. la and lb, hereafter designated as spectra A and B, respectively. 
In spectra A, S (designated NPS in the Figure) represents a rather unlikely condition in 
that it falls by a factor of lo4 before it levels off. The situation for spectra B is more 
likely to occur in actual imaging systems and, indeed, 
Hi-Plus/XRP screen/film at diagnostic energies.letl' 

closely resembles those obtained for 
The rms values of the noise generated 

were 0.103 and 0.144, respectively. Two object functions were used. The first was a 
rectangle with a width of 1.0 mm and an amplitude of 1.0. The second was a Gaussian with a 
width of 0.2 mm FWHM and an amplitude of 2.83. The detection sensitivity index (d') for the 
ideal observer is about 10 for all four combinations of spectra with objects. One sample of 
the data sets generated for the rectangle combined with spectra A is shown in Fig. 2a. The 
60 data points shown represent a subsample from 90 data points that are filtered on the 
basis of 256 points suitably extended with a taper function. It is observed that the 
smoothness in the object, centered on 3 mm, closely resembles the smoothness in the noise as 
suggested by the spectra in Fig. la. 

The result of applying a conventional nonlinear fitting procedure, based on Fq. (4), to 
the central 4 0 data points from Fig. 2a is shown in Fig. 2b. Only the object's position 
is allowed to vary in this fit. The object's amplitude and width and the zero value of the 
background are assumed to be known. Fig. 2c shows the same data from Fig. 2a after 
prewhitening. The 60 data points are extended by a linear taper to a length of 128 for the 
filtering operation. It is seen that the end points respond somewhat violently to the 
filtering operation as it amounts to an edge enhancement and the tapered extension creates a 
discontinuity in slope at the end. For this reason, the central section consisting of 40 
data points is used for fitting and the end points are discarded. The fit with respect to 
position of the prewhitened data is shown in Fig. 2d. The ringing in the predicted func 
arises from the abrupt frequency cutoff of the effective filter after prewhitening H S-l f 

ion 
2, 
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Figure 1. The square of the modulation transfer function (MTF), the noise power spectrum 
(NBS) and the noise equivalent quantum (NEQ) spectrum used to generate data for 
testing the algorithms. The designations are a) spectra A, and b) spectra B. 

which is the same as NEQ l/2. It should be clear that the fluctuations of the data about-the 
fitted curve are strongly correlated in Fig. 2b whereas they appear uncorrelated in Fig. 2d. 
The prewhitening works! 

A test series of 200 data sets were generated for each of the four combinations of object 
functions and spectra. Each data set was fit by the known function allowing only its 
position to vary. In all cases the mean of the estimated position was the same as that used 
to generate the data to very high accuracy. Thus, both the prewhitened and non-prewhitened 
procedures yield unbiased estimates. Each series started with the same seed for the 
pseudorandom number generator, so the results are not statistically independent. Table I 
summarizes the predicted and observed accuracies obtained with and without prewhitening. 
The accuracies are substantially improved by the prewhitening procedure for spectra A and 
modestly improved for spectra B. Since the correct rms noise is used in each fitting 
process, the average x2 value in each case is about 39, the same as the number of degrees of 
freedom. However, as can be seen from the Table, the result is an underestimate of the 
position uncertainty when Eq. (16) is used and the data have not been prewhitened. This is 
a consequence of using Eq. (4) to calculate x2 rather than Eq. (3). The mean value of the 
Durbin-Watson parameter d is 1.96 for the fits to the prewhitened data, which is close to 
the expected value of 2. But the mean d value is 0.089 for spectra A and 0.76 for spectra B 
without prewhitening, indicating that the residuals in these fits are correlated. This may 
be taken to imply that the predicted uncertainties in the parameter estimation are 
incorrect. 

SPIE Vol. 454 Application of Opticalinstrumentation in Medicine XII (1984J / 75  



a) 

Ij~~o(.~~.f, , , / , ,;;;zoc;-j I 
0 1 2 3 4 5 6 

poSlTlON (mm1 

-2 , , , ., , ( I /III '!II:IIII 

0 I 2 3 4 5 6 

POSITION tmml 

-0.25 , , , , / I' I I 5 " 8 
I 2 3 4 

POSITION lmml 

,.., 
4  d) 
4  - o  

1.0’ 
4 s 

a 

u 3 
Q a.5i 
2  4. 

zi 

3  @,@- o 
JILL 

* 

o 0 o* o D * 
0 s 

- 0  . 
e  

7  

-1.0 , , , 
I I / ’ : 

1 2 I 4 

POSITION (mm) 

Figure 2. a) A data sample generated using spectra A and a rectangular object of width 
1 mm and unity amplitude, b) the minimum x2 
to a subsample of the original data, 

fit with respect to object position 
c) the same data after prewhitening, and 

d) a fit of the prewhitened object function to the subsample of (c) indicated 
by the bracket. The prewhitening procedure reduces the rms deviation in the 
estimated position by 34%. 

TABLE I 

Summary of predicted and observed rms deviations in object localization based on 
200 sets of trial data. Spectra A corresponds to Fig. la and B to Fig. lb. 

ox (mm) 

Object Spectra Prewhiten RI* 17 or 18 Eq. 16 Actual 

Rectangle A Yes .038 .038 .041 
No .054 .023 .055 

Point A Yes .017 .018 .017 
No .040 .021 .041 

Rectangle B Yes .039 .038 .045 
No .047 .027 .049 

Point B Yes .016 .017 .015 
No .021 .017 .023 
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The robustness of the prewhitening technique may be tested by assuming the wrong noise 
power spectra for the prewhitening filter. It is found that the assumption of an NPS that 
is ~20% wider than the NPS used to generate the data yields only moderately worse fitting 
accuracies. For spectra B the positional uncertainties increase by less than 2% and the a 
values are 2.03 and 1.82. For spectra A, the uncertainty increases by as much as 44% and 
the ?i values are 2.31 and 1.25. It is worse to assume a narrower NPS than is correct for 
the data. While the value of d obtained helps indicate when the wrong prewhitening filter 
has been used, it is not as sensitive as one would like. In the face of no information 
about the NPS of a given data sample, it is probably safest to assume white noise, that is, 
use no prewhitening. When the NPS is known moderately well, it is best to overestimate the 
width of the NPS for the prewhitening calculation. 

Discussion 

We have shown that it is possible to construct an optimal estimator that can take into 
account known noise correlation using the prewhitening approach. Substantially improved 
performance can be achieved over that obtained by conventional estimators, which are optimal 
only for uncorrelated noise. The incorporation of noise correlation into the analysis also 
allows a reliable measure of the goodness of fit to be defined and provides an accurate 
estimation of the statistical uncertainties in the derived parameters. In the future it 
would be desirable to compare the prewhitening method to one based upon the minimization of 
the complete x2 expression given in Eq. (3). 
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